Perturbation Theory of Schrödinger Operators in Infinitely Many Coupling Parameters
نویسندگان
چکیده
In this paper we study the behavior of Hamilton operators and their spectra which depend on infinitely many coupling parameters or, more generally, parameters taking values in some Banach space. One of the physical models which motivate this framework is a quantum particle moving in a more or less disordered medium. One may however also envisage other scenarios where operators are allowed to depend on interaction terms in a manner we are going to discuss below. The central idea is to vary the occurring infinitely many perturbing potentials independently. As a side aspect this then leads naturally to the analysis of a couple of interesting questions of a more or less purely mathematical flavor which belong to the field of infinite dimensional holomorphy or holomorphy in Banach spaces. In this general setting we study in particular the stability of selfadjointness of the operators under discussion and the analyticity of eigenvalues under the condition that the perturbing potentials belong to certain classes. email:[email protected] current adress: Max-Planck-Instiute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany, email: [email protected]
منابع مشابه
Reflection Symmetries and Absence of Eigenvalues for One-dimensional Schrödinger Operators
We prove a criterion for absence of decaying solutions for onedimensional Schrödinger operators. As necessary input, we require infinitely many centers of local reflection symmetry and upper and lower bounds for the traces of the associated transfer matrices.
متن کاملThe extraordinary spectral properties of radially periodic Schrödinger operators
Since it became clear that the band structure of the spectrum of periodic Sturm–Liouville operators t = − (d/dr2) + q(r) does not survive a spherically symmetric extension to Schrödinger operators T = −1+V with V (x) = q(|x|) for x ∈ R , d ∈ N\ {1}, a wealth of detailed information about the spectrum of such operators has been acquired. The observation of eigenvalues embedded in the essential s...
متن کاملInfinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
متن کاملOscillation of the Perturbed Hill Equation and the Lower Spectrum of Radially Periodic Schrödinger Operators in the Plane
Generalizing the classical result of Kneser, we show that the Sturm-Liouville equation with periodic coefficients and an added perturbation term −c2/r2 is oscillatory or non-oscillatory (for r →∞) at the infimum of the essential spectrum, depending on whether c2 surpasses or stays below a critical threshold. An explicit characterization of this threshold value is given. Then this oscillation cr...
متن کاملExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999